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Single Particle Cryo-Electron Microscopy

Drawing of the imaging process:
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Single Particle Cryo-Electron Microscopy: Model

Projection Ii

Molecule φ

Electronsource

Ri =





| | |
R1
i R2

i R3
i

| | |



 ∈ SO(3)

Projection images Ii (x , y) =
∫∞

−∞
φ(xR1

i + yR2
i + zR3

i ) dz + “noise”.

φ : R3 7→ R is the electric potential of the molecule.

Cryo-EM problem: Find φ and R1, . . . ,Rn given I1, . . . , In.
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Toy Example
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E. coli 50S ribosomal subunit: sample images

Fred Sigworth, Yale Medical School

 

 

Movie by Lanhui Wang and Zhizhen (Jane) Zhao
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Algorithmic Pipeline

Particle Picking: manual, automatic or experimental image
segmentation.

Class Averaging: classify images with similar viewing directions,
register and average to improve their signal-to-noise ratio (SNR).

Orientation Estimation:
S, Shkolnisky, SIIMS 2011.
Bandeira, Charikar, S, Zhu, ITCS 2014.

Three-dimensional Reconstruction:
a 3D volume is generated by a tomographic inversion algorithm.

Iterative Refinement

Assumptions for today’s talk:

Trivial point-group symmetry

Homogeneity: no structural variability
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Orientation Estimation: Fourier projection-slice theorem

Projection Ii

Projection Ij

Îi

Îj

3D Fourier space

3D Fourier space

(xij , yij)

(xji , yji )

Ricij cij = (xij , yij , 0)
T

Ricij = Rjcji
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Angular Reconstitution (Van Heel 1987, Vainshtein and Goncharov 1986)
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Experiments with simulated noisy projections

Each projection is 129x129 pixels.

SNR =
Var(Signal)

Var(Noise)
,

(a) Clean (b) SNR=20 (c) SNR=2−1 (d) SNR=2−2 (e) SNR=2−3

(f) SNR=2−4 (g) SNR=2−5 (h) SNR=2−6 (i) SNR=2−7 (j) SNR=2−8
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Fraction of correctly identified common lines and the SNR

Define common line as being correctly identified if both radial lines
deviate by no more than 10◦ from true directions.

log2(SNR) p

20 0.997
0 0.980
-1 0.956
-2 0.890
-3 0.764
-4 0.575
-5 0.345
-6 0.157
-7 0.064
-8 0.028
-9 0.019
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Least Squares Approach

Consider the unit directional vectors as three-dimensional vectors:

cij = (xij , yij , 0)
T ,

cji = (xji , yji , 0)
T .

Being the common-line of intersection, the mapping of cij by Ri must
coincide with the mapping of cji by Rj : (Ri ,Rj ∈ SO(3))

Ricij = Rjcji , for 1 ≤ i < j ≤ n.

Least squares:

min
R1,R2,...,Rn∈SO(3)

∑

i 6=j

‖Ricij − Rjcji‖2

Search space is exponentially large and non-convex.

Amit Singer (Princeton University) February 2014 11 / 29



Quadratic Optimization Under Orthogonality Constraints

Quadratic cost:
∑

i 6=j ‖Ricij − Rjcji‖2

Quadratic constraints: RT
i Ri = I3×3

(det(Ri ) = +1 constraint is ignored)

We approximate the solution using SDP and rounding. Related to:

Goemans-Williamson (1995) SDP relaxation for MAX-CUT

PhaseLift (Candes et al 2012)

Generalized Orthogonal Procrustes Problem (Nemirovski 2007)

Non-commutative Grothendick Problem (Naor et al 2013)

“Robust” version – Least Unsquared Deviations (Wang, S, Wen 2013)

min
R1,R2,...,Rn∈SO(3)

∑

i 6=j

‖Ricij − Rjcji‖
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SDP Relaxation for the Common-Lines Problem

Least squares is equivalent to maximizing the sum of inner products:

min
R1,R2,...,Rn∈SO(3)

∑

i 6=j

‖Ricij−Rjcji‖2 ⇐⇒ max
R1,R2,...,Rn∈SO(3)

∑

i 6=j

〈Ricij ,Rjcji 〉

⇐⇒ max
R1,R2,...,Rn∈SO(3)

∑

i 6=j

Tr(cjic
T
ij R

T
i Rj) ⇐⇒ max

R1,R2,...,Rn∈SO(3)
Tr(CG )

C is the 2n × 2n matrix (“the common lines matrix”) with

Cij = c̃ji c̃
T
ij =

[

xji
yji

]

[

xij yij
]

=

[

xjixij xjiyij
yjixij yjiyij

]

, Cii =

[

0 0
0 0

]

G is the 2n × 2n Gram matrix G = R̃T R̃ with Gij = R̃T
i R̃j :

G =
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n
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




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]
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






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1 R̃n
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2 R̃n

...
...

. . .
...

R̃T
n R̃1 R̃T

n R̃2 · · · I2×2










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SDP Relaxation and Rounding

max
R1,R2,...,Rn∈SO(3)

Tr(CG )

SDP Relaxation:

max
G∈R2n×2n

Tr(CG )

s.t. G � 0, Gii = I2×2, i = 1, 2, . . . , n.

Missing is the non-convex constraint rank(G ) = 3.

Randomize a 2n × 3 orthogonal matrix Q using (careful) QR
factorization of a 2n × 3 matrix with i.i.d standard Gaussian entries

Compute Cholesky decomposition G = YY T

Round using SVD: (YQ)i = UiΣiV
T
i =⇒ R̃T

i = UiV
T
i .

Use the cross product to find RT
i .

Loss of handedness.
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Spectral Relaxation for Uniformly Distributed Rotations

[ | |
R1
i R2

i

| |

]

=

[

x1i x2i
y1
i y2

i

z1i z2i

]

, i = 1, . . . , n.

Define 3 vectors of length 2n

x =
[

x11 x21 x12 x22 · · · x1n x2n
]T

y =
[

y11 y21 y12 y22 · · · y1n y2n
]T

z =
[

z11 z21 z12 z22 · · · z1n z2n
]T

Rewrite the least squares objective function as

max
R1,...,Rn∈SO(3)

∑

i 6=j

〈Ricij ,Rjcji 〉 = max
R1,...,Rn∈SO(3)

xTCx + yTCy + zTCz

By symmetry, if rotations are uniformly distributed over SO(3), then
the top eigenvalue of C has multiplicity 3 and corresponding
eigenvectors are x , y , z from which we recover R1,R2, . . . ,Rn!
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Spectrum of C

Numerical simulation with n = 1000 rotations sampled from the Haar
measure; no noise.

Bar plot of positive (left) and negative (right) eigenvalues of C :
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Eigenvalues: λl ≈ n
(−1)l+1

l(l+1) , l = 1, 2, 3, . . .. (12 ,−1
6 ,

1
12 , . . .)

Multiplicities: 2l + 1.

Two basic questions:

1 Why this spectrum? Answer: Representation Theory of SO(3)
(Hadani, S, 2011)

2 Is it stable to noise? Answer: Yes, due to random matrix theory.
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Probabilistic Model and Wigner’s Semi-Circle Law

Simplistic Model: every common line is detected correctly with
probability p, independently of all other common-lines, and with
probability 1− p the common lines are falsely detected and are
uniformly distributed over the unit circle.
Let C clean be the matrix C when all common-lines are detected
correctly (p = 1).
The expected value of the noisy matrix C is

E[C ] = pC clean,

as the contribution of the falsely detected common lines to the
expected value vanishes.
Decompose C as

C = pC clean +W ,

where W is a 2n × 2n zero-mean random matrix.
The eigenvalues of W are distributed according to Wigner’s
semi-circle law whose support, up to O(p) and finite sample
fluctuations, is [−

√
2n,

√
2n].
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Threshold probability

Sufficient condition for top three eigenvalues to be pushed away from
the semi-circle and no other eigenvalue crossings:
(rank-1 and finite rank deformed Wigner matrices,
Füredi and Komlós 1981, Féral and Péché 2007, ...)

p∆(C clean) >
1

2
λ1(W )

Spectral gap ∆(C clean) and spectral norm λ1(W ) are given by

∆(C clean) ≈ (
1

2
− 1

12
)n

and
λ1(W ) ≈

√
2n.

Threshold probability

pc =
5
√
2

6
√
n
.
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Numerical Spectra of C , n = 1000
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Estimation Error

True rotations: R1, . . . ,Rn.

Estimated rotations: R̂1, . . . , R̂n.

Registration:

Ô = argmin
O∈SO(3)

N
∑

i=1

‖Ri − OR̂i‖2F

Mean squared error:

MSE =
1

N

N
∑

i=1

‖Ri − ÔR̂i‖2F
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MSE for n = 1000

SNR p MSE

2−1 0.951 0.0182

2−2 0.890 0.0224

2−3 0.761 0.0361

2−4 0.564 0.0737

2−5 0.342 0.2169

2−6 0.168 1.8011

2−7 0.072 2.5244

2−8 0.032 3.5196

Model fails at low SNR. Why?

Wigner model is too simplistic – cannot have n2 independent random
variables from just n images.

Cij = K (Pi ,Pj), “random kernel matrix”
(Koltchinskii and Giné 2000, El-Karoui 2010).

Kernel is discontinuous (Cheng, S, 2013)

Amit Singer (Princeton University) February 2014 21 / 29



Maximum Likelihood Solution using SDP

Main idea: Lift SO(3) to Sym(S2)

Suppose x1, x2, . . . , xL ∈ S
2 are “evenly” distributed points over the

sphere (e.g., a spherical t-design).

To each R ∈ SO(3) we can attach a permutation π ∈ SL via the
group action and the assignment/Hungarian algorithm
(this does not need to be constructed implicitly).

Notice: We are discretizing S2, not SO(3)
(substantial gain in computational complexity)

We will see that the likelihood function is linear in the PSD matrix
that encodes the relative permutations, and that SO(3) implies
further linear constraints.
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Convex Relaxation of Permutations arising from Rotations

The convex hull of permutation matrices are the doubly stochastic
matrices (Birkhoff-von Neumann polytope):

Π ∈ R
L×L, Π ≥ 0, 1TΠ = 1T , Π1 = 1

Rotation by an element of SO(3) should “map nearby-points to
nearby-points”. More precisely, SO(3) preserves inner products:

Xij = 〈xi , xj〉, Xπ(i),π(j)
ǫ

= Xij

ΠXΠT ǫ

= X =⇒ ΠX
ǫ

= XΠ
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Convex Relaxation of Cycle Consistency: SDP

Let G be a block-matrix of size n × n with Gij ∈ R
L×L.

We want Gij = ΠiΠ
T
j .

G is PSD, Gii = IL×L, and rank(G ) = L

(the rank constraint is dropped).

Gij ∈ R
L×L, Gij ≥ 0, G1 = 1

GijX
ǫ

= XGij
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Maximum Likelihood: Linear Objective Function

The common line depends on RiR
T
j .

Likelihood function is of the form

∑

i 6=j

fij(RiR
T
j )

Nonlinear in RiR
T
j , but linear in G .

Proof by picture.
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Exact Recovery

Experience with the multireference alignment problem: The solution
of the SDP has the desired rank up to a certain level of noise (w.h.p).

In other words, even though the search-space is exponentially large,
we solve ML in polynomial time.

This is a viable alternative to heuristic methods such as EM and
alternating minimization.

Can be used in a variety of problems where the objective function is a
sum of pairwise interactions.

Need better theoretical understanding for the phase transition
behavior and conditions for exact recovery.
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Ongoing Research in cryo-EM and Related Applications

Ab-initio reconstruction without class averaging:
scaling the SDP to larger n

Heterogeneity

Translations

Contrast transfer function of the microscope, different defocus groups

Molecules with symmetries

Beam induced motion and motion correction

XFEL (X-ray free electron lasers)

Structure from motion (computer vision)
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